sometimes squill, would bring up a low Crampton Value. He stated digitalis would first reduce the systolic pressure difference, next the pulse rate difference, and lastly the diastolic difference, all depending upon the capacity of the circulation to react. From an entirely different source, however, our attention was called to the experiences of A. W. Ward, M. D., Chief of a Surgical Division of the Englewood Hospital, who, without knowledge of the Crampton Test, had begun to use digitalis empirically in weak patients preparing them for operation. He got good results.

"Thy patients improved in tone and did well." Accordingly, we adopted the following course. If possible, all patients were given the Crampton Test. All who showed a rating below 65 were reserved from operation and digitalized until the test rose above 65. Two results were defi- nite.

1. We verified Crampton's statement that digitalis would raise his index.

2. We experienced no case of shock and we did not lose a patient. Whether or not we would have had shock and lost a patient without digitalizing no one will ever know, but the patients lived.

We must remember that these cases received also rest and hospital care as well as digitalis, and their condition did not compel immediate operation.

References


5. The Diagnosis and Treatment of Variations in Blood Pressure and Nephritis, Mosenthal, N. Y. Oxford Univ. Press, 1939, "Crampton Index," 60.


INTERNATIONAL ANESTHESIA has long awaited a text from Guedel, who has reached such preeminence in the specialty and his current volume will be gladly welcomed and deeply appreciated. Due to the deplorable lack of knowledge of anesthesia in the U. S. Army Medical Corps during the World War, Guedel found himself in the embarrassing position of providing pain relief for wounded soldiers in several base hospitals of the war zone. The only available personnel was made up of nurses and enlisted men of the Army Medical Corps, with little or no medical training or background.

By means of a motor-cycle he was able to visit, once daily, several base hospitals and there to instruct and supervise untrained and inexperienced personnel in the clinical use of anesthesia. The necessity was obvious for a simple and rapid means of teaching physical signs and danger signals which could be readily grasped by the uninformed. Also evidence was needed which could tell him at a glance, on his short daily inspection visits, whether the personnel was applying instruction which had previously been received.

As the result of careful and accurate observation during the war, a fund of information was amassed. These data have been subjected by Guedel to experimental study and leisurely contemplation during the intervening years. As a result Guedel has evolved a technique of teaching which has been found exceptionally fruitful in the hands of others as well as himself in the instruction of undergraduate and graduate medical students.

While some of the material which constitutes the current volume has been previously published, much has never before been printed; and the whole has not previously been gathered together in an orderly fashion.

Part I deals with the basic principles of inhalation anesthesia, such as the mechanism of inhalation anesthesia; stages of anesthesia; signs of anesthesia; depth of anesthesia required for control of surgical reflexes, depth of anesthesia
necessary for various surgical procedures; potency of the various anesthetic agents; the mechanism of various anesthetic requirements; preparation of the patient and selection of the anesthetic agent. This part of Guedel's book will certainly prove essential to teachers and students in our medical schools and in addition graduate physicians whether specialists or general practitioners, will find in these chapters a rational answer to many of their anesthetic problems.

Part II of the Guedel book deals with difficulties and deaths under anesthesia and discusses in considerable detail such problems as: accidents due to changes in blood pressure during anesthesia; ventricular fibrillation; central respiratory failure; accidents due to peripheral respiratory interference; nitrous oxide in obstetrics; breath holding; pharyngeal and laryngeal spasm; tongue swallowing; and aspiration of debris, with methods of prevention and treatment.

Also such miscellaneous accidents as massive atelectasis, tracheal collapse, convulsions under anesthesia, status lymphaticus, embolism, tachycardia, injuries from liquid and vapor anesthetics, as well as postoperative hyperthermia, cerebral asphyxia and cyanosis are dealt with. The volume closes with chapters on anesthetic explosions and a number of very valuable selected references are given.

Guedel in his preface remarks that the road guide for the motorist is intended to get him to his destination. It points out the landmarks necessary to that end, but avoids unnecessary detail. Each time the motorist travels the road he notes something he had overlooked on his previous trips, but ultimately he gets to know the road even to knowing what to expect in the way of varying conditions.

Like the road map for the motorist, Guedel's fundamental guide is intended to help the anesthetist through his early ventures in general anesthesia and while it intentionally treats lightly the more complicated physiological and pharmacological mechanisms of anesthesia, describing these only to the extent necessary in their clinical application, it is much more complete in necessary detail in dealing with such factors as the "signs of anesthesia".

Waters, who contributes the foreword, sums up his opinion of Guedel's book as follows: "The methods of Guedel have long been used by many of us. Personally, I am very happy at the prospect of having available the contents of this small book as an aid in my attempts to convey to medical students and young physicians the principles and practices of inhalation anesthesia."

Guedel dedicates his volume to "Laurette and Frank H. McMetchan in appreciation of their untiring efforts towards the advancement of anesthesia", and needless to say the recipients of this dedication appreciate it as one of the finest things that has come in their lives.

Visceral Disturbances After Operations for Brain Tumors. B. Schlesinger.

CHLESINGER CALLS attention to the fact that after intracranial interventions, particularly those near the brain stem, functional disturbances occasionally develop in the region of the sympathetic vagus nucleus or of its superordinated diencephalic centers, which in turn may lead to dangerous, even fatal, visceral disturbances (Cushing, Hess). In the lungs these disturbances become manifest as an abnormal permeability of the vascular walls with resulting pulmonary edema, and in the region of the esophagus, stomach or duodenum as loss of substance, which may appear in all the transitional stages from hemorrhagic erosions to penetrated ulcers with their sequelae. In one of the two cases described by the author (meningioma of the posterior cranial fossa) the severe pulmonary edema that developed in complete cardiac sufficiency and had a tendency to relapse could be effectively counteracted by a puncture of the ventricle. The second patient whose history is reported died of a gastric hemorrhage. In this instance the tumor, a baso-frontal meningioma, had no relations to the brain stem; however, a chronic increase in the cerebral pressure had apparently produced a functional disturbance in the nerve centers mentioned.
Both inhalation anesthetics produced comparable anesthetic qualities and there were no statistical differences between the parameters recorded during maintenance of anesthesia. On the basis of the reported results, sevoflurane and isoflurane are suitable inhalation anesthetics for use in calves. However, present cost of sevoflurane is a limiting factor for its use in food animals. (See "Inhalation anesthetic agents: Properties and delivery" and "Anesthesia machines: Prevention, diagnosis, and management of malfunctions".) Clinical uses of intravenous agents to induce and maintain general anesthesia are reviewed in separate topics. (See "General anesthesia: Intravenous induction agents" and "Maintenance of general anesthesia: Overview", section on 'Total intravenous anesthesia').

Clinical effects. Inhalation anesthetics produce sedation and general anesthesia as well as other clinical effects. Pharmacodynamic parameters . . . Inhalation anesthesia: A fundamental guide, 2nd ed, The Macmillan Company, New York 1951. Apfel CC, Korttila K, Abdalla M, et al. 1 Department of Anesthesiology & Critical Care, Cook County Hospital, Chicago, Illinois. PMID: 3176851. No abstract available. MeSH terms. Adult. Aged. Anesthesia, Inhalation / methods*. Anesthetics / administration & dosage. Anesthetics / pharmacokinetics. Animals. Child. Dose-Response Relationship, Drug. Drug Combinations. These inhalation anesthetics were used until the mid-50s of the 20th century. The history of the use of inhalational anesthetics as a means of general anesthesia began with a public demonstration in 1846 of the first etheric anesthesia. In the 1940s, dinitrogen oxide (Wells, 1844) and chloroform (Simpson, 1847) were introduced into practice. These inhalation anesthetics were used until the mid-50s of the 20th century. Under inhalation anesthesia, patients respond only sluggishly to rising arterial carbon dioxide levels (= respiratory depression). Even low concentrations of the inhalation agents also depress the chemoreceptor response to hypoxemia. Central nervous system effects. The inhalation anesthetics depress, in a dose-dependent manner, CNS function â€“ as shown by clinical findings starting with a state of somnolence, during which the patient can still respond â€“ to coma, in which external noxious (we do not call it â€œpainfulâ€ as you have to be conscious to find something painful!) stimulation elicits no