Visual evaluation of early (~ 4-cell) mammalian embryos.
How well does it predict subsequent viability?
Marie-Noël Bruné Rossel

REFERENCES

Aberdeen Fertility Centre. Medi-CAL Unit
April 27th 2003-05-07

Ahern TJ. and Gardner DK. (1998) Culturing bovine embryos in groups stimulates blastocyst development and cell allocation to the inner cell mass. Theriogenology 49, 194.

Assisted Reproduction Unit, Aberdeen University, Aberdeen Maternity Hospital, Foresterhill. Ovid: Bibliographic records.
http://gateway2.ovid.com/ovidweb.cgi
April 30th 2003

Edwards RG. and Beard HK. (1999). Is the success of human IVF more a matter of genetics and evolution than growing blastocysts?. Human Reproduction 14, 1-4

Irvine Scientific
http://www.irvinesci.com/web1/website/techinfo/index.cfm
July 10th 2003

Jones A (2003) Alpha Science: Choosing the right embryo. www.ivf.net/cgi-bin/webbbs/amy/config.pl?read=10
April 30th 2003.

Milki AA, Fisch JD. and Behr B. (1999). Two blastocyst transfer has similar pregnancy rates and a decreased multiple gestation rate compared to three blastocyst transfer. Fertility and Sterility 72, 225-228
Milki AA., Hinckley MD, Fisch JD., Dasig D and Behr B (2000). Comparison of human blastocyst transfer with day 3 embryo transfer in similar patient populations. Fertility and Sterility 73, 126-129.

Oxford Fertility Unit Website
http://www.fert.org.uk/intro.htm
May 5th 2003

mitochondrial function in vitro in the presence of polyunsaturated fatty acid-enriched serum. Paediatric Research 53, 48A

Rijnders PM and Jansen CA (1998) The predictive value of day 3 embryo morphology regarding blastocyst formation, pregnancy and implantation rate after day 5 transfer following in-vitro fertilization or intracytoplasmic sperm injection. Human Reproduction 13, 2869-2873.

Science Update. Sperm screened before injection
http://www.nature.com/nsu/030804/030804-14.html
August 14th 2003

In mammals, when male bodies build sperm, they throw out most of the histone spools, to allow for tighter packing. But a small percentage still remains (1 percent in mice and 15 percent in humans), providing scaffolding for DNA in regions specific to sperm creation and function, metabolism, and embryo development - to allow the cellular mechanisms to make use of these DNA instructions. Studies in mammals have shown that the 'memories' of various environmental effects - such as diet, weight, and stress - are being passed on from dads to offspring, despite these states not being coded for in the DNA sequences carried by sperm. A contradiction in itself. "We can see no states being coded" does not mean it is not there. The story has much to do with epigenetics. Early mammalian embryogenesis relies on a large range of cellular and molecular mechanisms to guide cell fate. In this highly complex interacting system, molecular circuitry tightly controls emergent properties, including cell differentiation, proliferation, morphology, migration, and communication. These molecular circuits include those responsible for the control of gene and protein expression, as well as metabolism and epigenetics. In order to generate the nervous system, the embryo first produces two pluripotent populations, the inner cell mass and then the primitive ectoderm. The latter is the cellular substrate for gastrulation from which the three multipotent germ layers form. How is early mammalian development similar to the early chick? - the two have similar gastrulation movements. the early mammalian embryo moves as if it was sitting on top of a yolk mass (like in a chicken), but is instead sitting on a fluid-filled blastocoel. How is early mammalian development different from the early chick? - How does Epiblast form? - cells of the ICM that lie above the hypoblast after hypoblast delimitation has occurred - Nanog- TF marker for epiblast. What is the Bilaminar Germ Disc? EPIBLAST + HYPOBLAST - no cavity! the blastocoel is below the hypoblast & takes the place of the yolk sac - layers later segregate into discrete layers (upon staining). How does the Amnionic Cavity form? PDF | The early mouse embryo is an excellent system to study how a small group of initially rounded cells start to change shape and establish the first | Provide a greater understanding of how adhesion patterns the early mammalian embryo. 1. the mouse preimplantation embryo. As a model of adhesion in mammalian. Development. Most research on adhesion has been performed on cells in tissue culÄ spherical and do not integrate into the embryo mass. (C) Treating the embryo with the. DECMA-1 E-cadherin function-blocking antibody reduces adhesion and causes all cells.