BOOK COMMENTARY

Structural Equation Modeling Texts: A Primer for the Beginner
Dale N. Glaser
Pacific Science & Engineering Group
San Diego State University

Many multivariate statistical techniques that previously appeared prohibitively applied to the researcher are now becoming increasingly accessible given the advances and user-friendly nature of the graphic interfaces associated with many software applications. Structural equation modeling (SEM) is one such technique that has seen an exponential growth in its development and usage. However, up in less than a decade ago, most of the texts devoted to SEM were relatively complex, with a sound foundation in matrix algebra necessitated. However, there has been a spate of introductory texts that have inundated the marketplace recently, each with their own emphasis (e.g., type of software and philosophy). The purpose of this article is to provide a comprehensive review of the various introductory texts, some of which are software specific and some that are more general. Also, for those who have gained more than a cursory familiarity with SEM, a brief review of more advanced text is provided.

Many researchers know that with the advent of user-friendly software even the most complex statistical analysis is made accessible. Whereas many neophytes find the syntax and programming code associated with many of the popular statistical packages (e.g., SPSS, SAS, and so on) to be overwhelming, Windows-based, point-and-click; packages have ameliorated many of those user concerns. Even though a grasp of the syntax or code of any package is still necessary to maximize the full capacity of the statistical package, it is unequivocal that computer analysis is now much more accessible to the casual user. An example of such is SEM.

In a nutshell, SEM "is a statistical methodology that takes a confirmatory (i.e., hypothesis-testing) approach to the multivariate analysis of a structural theory bearing on some phenomenon" (Byrne, 1998). Thus, its roots germinate from the schools of factor analysis, regression analysis, and path analysis (see Bollen, 1989, and Kaplan, 2000, for a brief historical treatment of the development of SEM). A technique that up to a decade ago was still relatively arcane to many researchers has now flourished in its use and applicability in a wide array of fields and disciplines (Hayduk, 1996).

Concomitant with this growth in the use of SEM, in addition to software development, has been the influx of introductory texts. As pointed out in prior SEM text reviews (Glaser, 2000, 2001, 2002), up until 1995 there was a paucity of SEM texts that were readily accessible to the fledgling SEM user. Many of us used Bollen (1989) and Hayduk (1987) as our primary reference points, and they still stand as seminal readings in this domain. However, as novices for the newly applied user, or as part of a multivariate graduate course, those books may initially be a bit imposing. To capitalize on this gap, there has been a spate of introductory texts in the last 7 years, each with their own emphasis and idiosyncrasies. Thus, this review serves to point the reader to an introductory text that may best suit his or her needs. Even though toward the end of this review I offer some references that are more advanced, or specialized, in nature, the assumption is that the reader will be newly exposed to this exciting and rapidly developing analytical domain. Moreover, the reviews are primarily overviews; hence, more detailed (and critical) reviews can be found in the journal solely devoted to SEM: Structural Equation Modeling: A Multidisciplinary Journal. For ease of referencing, each section starts off with the titles to be reviewed.

573
The Classics


Even though there are texts that well predate the emerging popularity of SEM (e.g., Duncan, 1975), two texts were the primary references for introducing SEM, that is, those by Bollen (1989) and Hayduk (1987). Both of these texts still pass the litmus test in regard to their continued relevance and range of subject matter. The treatment of pertinent issues such as model identification and estimation in Bollen's text is virtually without peer, whereas Hayduk's text, though more oriented to LISREL users, has an impressive grasp on models that are of much current interest, such as mean structures and multisample modeling. However, unless the reader has some facility with matrix algebra and is relatively comfortable with intermediate statistics, the texts may be a formidable read. Thus, even though these texts are frequently cited in others' research endeavors, they may not be the best recommendation for the SEM neophyte. However, it is my opinion that, once the researcher has mastered the introductory rudiments of SEM, both of those texts are worthy collections. It is also recommended that as an extension of Hayduk's 1987 text, the interested reader pursue Hayduk's 1996 text titled LISREL: Issues, Debates, and Strategies, a follow-up companion piece that addresses such issues as model equivalence, hoops, stacked models, and modeling strategy.

Introductory Texts: Non-Software Specific


The texts reviewed in this section, though providing examples of software code (e.g., LISREL, EQS), are not wholly devoted, nor inclined, to the use of a particular type of software. One of the forerunners was John C. Loehlin’s Latent Variable Models: An Introduction to Factor, Path and Structural Analysis. Now in its third edition (1998); the first edition was published in 1987 and the second edition in 1992, this text was unique in its characterization of path models and active use of path diagrams. Thus, for the graphically inclined (i.e., those who can follow the flowcharts and the attendant text), Loehlin appears most accessible. However, for some readers, this same approach may seem off-putting. There are only seven chapters in the text, thus, if the student makes it to the end of this book, it may be beneficial to segment the chapters accordingly. At the time of writing, the various matrices that capture the mathematics in SEM were based on LISREL (with its attendant eight matrices); however, Loehlin uses the more economical McArdle-McDonald equation, which is essentially reduced to three matrices. Many examples of use of SEM in the literature are summarized in this text, with the various fit measures and indices reviewed. One other facet of this book that is most appealing is the Notes section appended at the end of each chapter. Not only are references provided, but this section also serves as a glossary of sorts, defining various terms and techniques. This text basically covers variations on path and structural models and includes two full chapters on exploratory factor analysis (EFA) and a final chapter with assorted odd and ends (e.g., multivariate path models, nonlinear modeling, and so on). Thus, if the reader is already versed in EFA, the amount of attention paid to this topic may seem but disproporionate. However, given the seminal importance of EFA, as a latent variable technique, and the parallels that can be drawn between EFA and SEM, the reader may have much to gain by these two chapters.

Schumacker and Lomax’s 1996 text A Beginner’s Guide to Structural Equation Modeling was the first text in the marketplace devoted to SEM that was indeed aptogegistic for the neophyte. It is simple in its prose, clearly written, and very much a nontechnical treatment for a relatively complex mathematical endeavor. Because it is truly aimed at an introductory audience, certain subjects are treated in an all too terse fashion (e.g., missing data, statistical assumptions); thus, this book serves as a springboard for more advanced texts that are more comprehensive in the coverage of these various topics. This text relies on two software packages for the bulk of examples: LISREL and EQS. Just prior to the text, LISREL syntax was relatively formidable, requiring a fundamental understanding of the various matrices (e.g., Θ, Σ, Φ). However, an accompanying language was created for this program called SIMPLIS, which in lines of code such as “Free: LX (1,2)” could be replaced with the actual names of the variables: “JobSat = JobSatisfaction.” Thus, both of these languages are covered in the examples that are literally provided in this text. Interestingly, and what shows the development of SEM in the years since, some of the topics covered in the “advanced” chapter, such as multiasampling SEM, are fairly routine nowadays. More-
over, quite a few new fit indices have come up since the publication of this text; thus an updated edition is definitely warranted. I have used this text as part of a multivariate class, of which I had approximately 4 weeks devoted to SEM. I found this text to be easily consumed within that relatively constrained time period. As mentioned earlier, though I opine that certain key topics are given too economical of a treatment, overall the introductory reader will find much to gain by this text.

Rex Kline's 1998 text Principles and Practice of Structural Equation Modeling is one of the few texts that are truly agnostic in its presentation of SEM, that is, not based on any specific software application. In fact, in his introductory chapter, Kline assures the reader that advanced quantitative skills will not be needed for this text, even though a background in elementary statistics (e.g., correlation) will be fruitful. An epistemological approach is employed in the notation and just does not favor any one particular software (e.g., Greek subscripts for LISREL). A very rudimentary treatment of statistics is covered in the chapter titled "Basic Statistical Concepts," including correlation, regression parameters, and so on. As reviewed in a more detailed summary (Clayton, 2000), the reader will especially find much to gain from the chapter on "Data Preparation and Screening," which includes sections on missing data, data screening, multivariate normality, and other requisite assumptions. The reader is already versed in assumptions associated with regression and multivariate analysis, this will serve as a pithy review.

There is a substantive treatment on path analysis and, what I thought, initially, a too-prolonged treatment on nonrecursive models (i.e., y \rightarrow x and x \rightarrow y). My initial reasoning was that given the known problems of model identification with nonrecursive paths, it was better to start with the simplest case, two variables x and y as both "cause" and "effect" on each other, because of the simplicity of those models tested in the scientific literature. However, on a second perusal of this text, issues that are brought up in this chapter, such as order and rank condition, identification, and so on, are not unique only to nonrecursive models.

Chapter 9 ("How to Fool Yourself With SEM") provides for the introductory student a much needed checklist of pitfalls, cautions, and so don'ts. This set of guidelines is demarcated by four major topics: specification (e.g., fail to have sufficient numbers of indicators of latent variables, add disturbance, or measurement error correlations with substantive reason); data (e.g., fail to examine distributional characteristics, assume that all relations are linear without checking); analysis and specification (e.g., specify a model based entirely on statistical criteria, estimate a very complex model with a small sample); and interpretation (e.g., interpret good fit as meaning that the model is proved, fail to consider [non-equivalent] alternative models). This is a brief yet worthwhile chapter for the introductory student, though Kline provides many modeling guidelines throughout the text, as with many principles in statistics, there are also many shades of gray in the assessment and testing of model fit. Overall, the text is sufficiently comprehensive in that it could serve as the primary text for a semester course, and, at the same time, if the introduction to SEM is part of a multivariate course, the instructor could select excerpts that provide a suitable foundation. Furthermore, even without the benefit of an academic environment, the book is written clearly enough that the interested reader could readably absorb the material on his or her own initiative.

Another text that is software-specific is Basics of Structural Equation Modeling (1998) by Geoffrey M. Maruyama. For a more in-depth review of this text, see Boomsma (2003a). As a summary, I agree with Boomsma's synopsis that this text would be of limited utility if the reader already has had some exposure to SEM. However, as a starting point, keeping in mind that this text is devoid of the technical issues that are the heart and soul of SEM, this book may suffice. The title of the leading chapter "What Does It Mean to Model Hypothesized Causal Processes With Non-experimental Data?" is intriguing, but as most modelers are aware of, ascribing causation, even with the most sophisticated statistical techniques, is problematic. A nice historical review of the precursors to SEM is offered with a very generous tendency of bold print analyzing following.

Where this book deviates from many of the other SEM texts is the coverage of collinearity and random/nonrandom error, each afforded as individual chapter. Though this text intentionally minimizes the statistical details of SEM, I am also not convinced that the attention allotted to subjects such as ridge regression (which is used to stabilize the regression solution when predictors are highly related, generally by adding a constraint), are wholly necessary. After a relatively lengthy treatment of recursive and longitudinal models and factor analysis, latent variable SEM is brought to the fore in chapter 8. It is in this chapter that the reader is introduced to the LISREL notation and the accompanying matrices, though without algebraic derivations. The author differentiates the measurement model (i.e., relation of manifest indicators with latent constructs) from the structural model (i.e., relation of the exogenous and endogenous constructs), although it might benefit the reader to accept a special issue of Structural Equation Modeling: A Multidisciplinary Journal, 2000, volume 7, issue 1 that primarily focuses on the multistep process of model testing and assessment. Real-life examples of various models comprise the next chapter titled "Using Latent Variables SEM to Examine Pessimism of Models," including a longitudinal
model with multiple indicators. The reader may find this chapter helpful not only in its detailed orientation toward application, but also the appendix that provides the syntax for LISREL, AMOS, and EQS for model testing. The next chapter of the text is devoted to a discussion of the SEM process and the different tools used in the analysis of data. The semiotic analysis of the model is presented as a general overview of the model, and the different examples of the model are compared (absolute vs. relative vs. adjusted) and interpreted.

The final chapters cover various topics of the basic mathematical model and then present an introduction to various areas of the topic that may be covered in the modeling process. The text does not cover topics in sufficient generality to be applicable to any software user or introductory reader. Some of the more technical details (e.g., the non-redundant reliance on the all-g model) may perplex some of the modeling readers, but for the most part the text is aimed at the reader desiring a concise and relatively non-technical primer. Generous examples of path analysis, confirmatory factor analysis, and structural models are provided. However, even though some of the sections are a bit terse, and some nonexistent (e.g., nonreductionist models), some readers may view as excessive the fact that first fourth of the length of the text is devoted to latent change analysis. Even though this type of analysis is becoming increasingly more popular (this is briefly touched in the "Special Topic section," the authors could probably have devoted an entire chapter or two to special topics and included latent change analysis as an ancillary topic.

As summarized in the more detailed reviews, the most likely usage of this text will be within the context of a multivariate course, where 2 to 3 weeks are devoted to SEM. The relative brevity of this book would render it appropriate for such a course.

Introductory Texts: Software Specific


576

Byrne, B. (1998). Structural equation modeling with LISREL, PRELIS, and SIMPLIS.
Byrne, B. (2001). Structural equation modeling with AMOS.

Barbara Byrne has written texts on the three leading software programs EQS (1994), LISREL (1998), and AMOS (2001) that literally take the researcher, step by step, through the model-testing process. The texts seem to reflect the development of the software environment, insofar as the first text emphasizes the use of syntax (i.e., program code unique to EQS) in model testing, with a cursory treatment of the Windows environment in the final three chapters. Conversely, the most recent text covering AMOS illustrates the dramatic progress made in testing models in a graphical Windows environment. In addition, the text mirrors the extensive research (and Monte Carlo studies) that has gone into examining the efficacy of fit indexes that have rapidly multiplied in the last 15 years.

All of the texts follow essentially the same format. Rudimentary aspects of SEM are briefly reviewed, with a more focused discussion on the mathematical model that is unique to each software (e.g., Bentler-Weckel model for EQS, LISREL model by ten Berge, & Storbom). The following chapters then specifically zero in on the software itself. Readers will notice a more concentrated emphasis on the syntax for EQS and LISREL, whereas though AMOS has a programming interface (i.e., AMOS Basic), the primary overview is associated with AMOS graphics (which many modelers find extremely user friendly). Both EQS and LISREL texts have a similar structure for the terminal section(s) following, with the chapters detailing first- and second-order confirmatory factor models, testing for construct validity (i.e., multiple-indicator model) and a chapter titled "Testing the Validity of a Causal Structure." The AMOS text slightly deviates with the omission of the construct validity chapters: Chapter 3 ("Testing for the Factorial Validity of a Theoretical Construct"); in each of the texts, provides a very accessible overview of how to assess model fit. Whereas older versions of LISREL consisted of just a handful of indexes to examine model fit (e.g., Goodness-of-Fit Index, Adjusted Goodness-of-Fit Index, etc.), these are probably more than 50 indexes to select from in current versions of the SEM software packages. Hence, given what may seem to be a bewildering choice of fit indexes for the fledgling SEM researcher, readers may find Boomsma (2000b) and Haynie and Panter (1995) to be most helpful references in determining (and reporting) model fit.
cates a relatively brief, but sufficiently comprehensive, treatment of the different types and classes of indexes (e.g., absolute fit indexes, incremental fit indexes, infraction-theoretic indexes, and so on) that are unique to each group, though there is tremendous overlap.

The following section in each of the texts covers multiple group analyses. Whereas multiple group analyses may appear second-tier in the initial stage of SEM, it is now a frequently used analysis, especially when testing the invariance of factorial structures across groups. This holds tremendous application to the research; it may be interesting in assessing the invariance of an assessment tool across populations of interest (e.g., does the factorial structure of a child depression inventory remain consistent across boys and girls?). The chapter on testing latent mean structures further indicates the level of complexity that the researcher can pursue in model testing. For a comprehensive summary of the developments in the invariance domain, the reader is encouraged to peruse Vandenberg and Lance (2000).

Each of the texts finishes off with topics that, though germane to any SEM user, have specific applicability to the software at hand. For instance, the AMOS text has chapters on bootstrapping and dealing with incomplete data. There have been tremendous strides made in the employment of missing data techniques, and AMOS was one of the first SEM applications that used maximum likelihood approaches to missing data (though the most recent version of LISREL [8.50] now incorporates a likelihood approach to missing data). For a nice primer on maximum likelihood approaches to missing data, see Enders (2001). Overall, the Byrne texts are very accessible and serve as excellent supplements to the manual provided with each of the software. However, readers will notice that certain topics are omitted, such as latent change analysis and nonrecursive modeling, thus they will need to refer to Little (1998) or Rey-Segov (2000) for a more accelerated treatment of those topical areas.

Two other brief texts solely devoted to LISREL that the reader may be interested in are Introduction to LISREL (Diamantopoulos & Sigauw, 2000) and Using LISREL for Structural Equation Modeling (Kelloway, 1998). Whereas Diamantopoulos and Sigauw focus on the more accessible SIMPLS language, Kelloway's work is focused on the more complex LISREL language, which uses Greek notation liberally. Even though these two texts provide a preliminary introduction to LISREL, they may be insufficient for the initial stages of learning SEM, they are relatively undernourished compared to the other texts.

More Advanced Texts and Special Topics

such an upsurge of interest (probably based in part on the software access) that an entire text has covered SEM approaches to latent variable growth curve modeling (Duncan, Duncan, Strycker, Li, & Alpert, 1999). There are also two excellent books from the American Psychological Association that cover, in more advanced detail, analysis of change (Collins & Horn, 1991; Collins & Sayer, 2001), though not exclusively employing SEM techniques.

What may have seemed intractable more than a decade ago is now virtually absorbed in the mainstream, as illustrated by a text that focuses exclusively on interaction and nonlinear SEM (Schermesser & Marcoulides, 1998). Kaplan (2000) also authored an excellent introductory text on SEM that takes an economic perspective (see Glasser, 2002, for a detailed review). However, this book is more akin to Bollen's 1989 text and thus may be arduous reading for the neophyte modeler.

With some optimism that SEM literally subsurmes the widest swath of statistical models (i.e., the broadest general linear model), the developments and progress that are made in this area almost seem limitless. As I was writing this review, I was furnished a new text to review edited by Marcoulides and Moustaki titled Latent Variable and Latent Structure Models (2002), which again indicates the stunning strides made in this field and includes chapters on multilevel factor analysis, modeling measurement error, semiparametric models, and confidence regions in SEM models.

References


Received April 14, 2002
Accepted April 27, 2002

578
Acknowledgments

In addition to the regular Consulting Editors, the following colleagues reviewed manuscripts received during 2001. We greatly appreciate their contributions to the quality of the Journal of Clinical Child and Adolescent Psychology.

Christina Adams, West Virginia University
Arthur Anastopoulos, University of North Carolina, Greensboro
Douglas Barnett, Wayne State University
Karen Baxter, University of Florida
Steven Beck, Ohio State University
Deborah C. Beidel, University of Maryland
Debra Boli-Dolan, University of Missouri-Columbia
Steven Berman, University of Central Florida
Karen Berman, Pennsylvania State University
Daphne Blunt Reutzel, University of California, Santa Barbara
Sanne Bogels, Maastricht University, The Netherlands
Steven Boggs, University of Florida, Clinical and Health Psychology
Kerry Bolger, University of Wisconsin
Michael Boyle, McMaster University
Carolyn Brown, University of Gent, Belgium
David Brent, University of Pittsburgh School of Medicine
Ronald Brown, Emory University School of Medicine
William Bulikowski, University of Concordia
Susan Campbell, University of Pittsburgh
Caryn Carlson, University of Texas
Timothy Cavell, Texas A&M University
Royce Chorpita, University of Hawaii
Rodney Clark, Wayne State University
Vanessa Clark, Monmouth College
Dong Coatesworth, Pennsylvania State University
Lawrence Cohen, University of Delaware
Bruce Compas, University of Vermont
Colleen Corley, University of Illinois at Urbana-Champaign
Aris Connell, Emory University
Keith Crnic, Pennsylvania State University
Philipppe Cunningham, Medical University of South Carolina
John Curry, Duke University Medical Center
Mark Daddis, Griffith University, Australia
Lynnda M. Dalhius, University of Maryland Baltimore County
Steven Dallinger, Southern Illinois University
Judy Dunn, University of London Institute of Psychiatry
Thomas D'Zurilla, State University of New York, Stony Brook
Andrew Eisen, Fairleigh Dickinson University
Thalia Eny, University of London Institute of Psychiatry
Jan Faint, Nova Southeastern University
Celia Fisher, Fordham University
Greta Francis, Brown University School of Medicine
Susan Frank, Michigan State University
Robert Friedman, Michigan State University
Laurie Friedman, Michigan State University
Robert Friedman, University of South Florida
William Friedman, Mayo Clinic, Rochester
Mary Fridastra, Ohio State University School of Medicine
Judy Gafan, Vanderbilt University
Julia Gomber, Teachers College, Columbia University
Jose Girgas, Princeton University
Rachel G. Klein, New York University, School of Medicine
Joseph Glutting, University of Delaware
Ian Gooden, University of Cambridge, United Kingdom
Romi Greens, Massachusetts General Hospital
Daryl B. Greenfield, University of Miami, Annas
Pat Harrison, University of Alabama
Scott Henggeler, Medical University of South Carolina
Stephen Hooper, University North Carolina, School of Medicine
Hyman Hops, Oregon Research Institute
Betty Hora, Purdue University
Jennifer Hudson, Temple University
Nick Ialomto, Johns Hopkins University, School of Hygiene and Public Health
Heidi Fendelmann, University of Nebraska
Carroll Izar, University of Delaware
Yo Jackson, University of Kansas
Jaimie Johnson, University of Florida, Clinical and Health Psychology
Kate Keenan, University of Chicago, Department of Psychiatry
Mary Lou Kelly, Louisiana State University
Maureen Kenty, Florida International University
Harvey Keelman, University of Manitoba
Jasna Keyes, Group Health Cooperative
Wendy Kluwe, Virginia Commonwealth University
Elizabeth Kloneff, San Diego State University
Hans Koot, Sophia Children's Hospital, Netherland
Maria Korov, University of Pittsburgh School of Medicine
Ani Flan Kour, University of Miami
Steven Lande, Illinois State University
Scott Lilienfeld, Emory University
Kristin Linddahl, University of Miami
John Lochman, University of Alabama, Tuscaloosa
Rolf Loeber, University of Pittsburgh School of Medicine
Donald Lynn, University of Kentucky
Noor Malik, University of Miami
K. Martin, University of Georgia
A. Mastro, University of Minnesota
Keith McBurnett, University of Chicago, Medical Center
Erlin McCune, Emory University
Suan McElane, Pennsylvania State University
Krista McKenna, University of Maryland Baltimore County
Richard Milich, University of Kentucky
Laura Miller, New York University School of Medicine
Marilyn Montgomery, Florida International University
Peter Maris, Maastricht University
Laura Munson, New York State Psychiatric Institute
Peter Mundy, University of Miami
Wendy Nilsen, University of Rochester, School of Medicine
Monica Nordberg, University of Uppsala, Sweden
John Oehlerker, Case Western Reserve University
Sean Perrin, University of London Institute of Psychiatry
Linda Pfiffner, University of Chicago, Department of Psychiatry
Vicky Phares, University of South Florida
Robert Pianta, University of Virginia
Armando A. Pina, Florida International University
Joscelyn Prinstein, Yale University
Herbert Gray, Florida State University
Ron Rapee, Macquarie University, Australia
David Reiman, Nova Southeastern University
Cecil Reynolds, Texas A&M University
Mark Roberts, Idaho State University
Cherie Rose, Florida International University
James Roton, Florida International University
Robert Russell, Loyola University, Chicago
Michael Rutter, King's College London
Lisaette M. Szasz, Florida International University
Laura Scarr-Salapatek, University of New Orleans
Angela Scarpas, Virginia Polytechnic Institute
Daniel Shaw, University of Pittsburgh School of Medicine
Lisa Sheehan, Oregon Research Institute
Antonia Sheffield Morris, University of New Orleans
Avin Shulman, University of Michigan
Persephone Silvethorn, University of New Orleans
Nirbhay Singh, Virginia Commonwealth University
Lyne Sipezland, University of Pennsylvania, Psychiatry
Brad Smith, University of South Carolina
James Snyder, Wichita State University
Michael Southam-Gerow, Virginia Commonwealth University
Anthony Spirito, Brown University School of Medicine
Eric Steele, St. Jude's Children's Research Hospital, Memphis
Gayl Sukstine, Boston University
Eric Sten, University of Texas, Austin
Timothy Stickle, University of New Orleans
Amy Street, Boston University School of Medicine
LeAnne Tann, Stanford University Medical Center
Maria Tanta, Research Institute on Addictions, University at Buffalo
Deborah Thummin, University of Miami School of Medicine
Bruce Thompson, Texas A&M University
Patrick B. Toland, University of Illinois at Chicago, Department of Psychiatry
Sincerely Tho, University of Rochester, Mt. Hope Family Center
Gail Tripp, University of Otago, New Zealand
Marion K. Underwood, University of Texas at Dallas
Luise Vargas, University of New Mexico, Children's Psychiatry
Eric Verberg, University of Kansas
Shari Wade, Cincinnati Children's Hospital Medical Center
Lynn Walker, Vanderbilt University School of Medicine
Carl F. Weems, University of New Orleans
Kathryn R. Wessel, University of Maryland
Robert Whalen, University of Tennessee
Rand Wilcox, University of Southern California
Michael Windle, University of Alabama
Eric Youngstrom, Case Western Reserve University
This robust commentary has been vetted by a team of scholars and practitioners committed to creating a comprehensive, biblically accurate theology of work. The IVP New Testament Commentary Series. Pastors with a passion for sound exposition and scholars with a heart for pastoral leadership have joined forces to produce this exciting commentary series. Browse over 50 commentaries free online. Welcome to Bible Hub's library of commentaries. We have just added many new sources, including The Expositor's Bible Commentary, Bengel's Gnomon, Lange's Commentary, Hastings Great Texts and many more. Click the Commentary tab or pulldown menu for a full selection of commentaries over any Bible passage you are researching. Many commentaries are also available in Parallel Format via the commentary tab. Whole Bible Commentaries. Online Bible Commentary. Thanks to our partners, this resource is free. Give today to make a difference in the lives of others! Become a Partner. Free Online Commentary. Study the Bible on the go with Andrewâ€™s free online Bible commentary. More than 3,200 notes written by Andrew Wommack. Commentary on 16 New Testament books, from Matthew to 2 Timothy. This is a great way to read Andrewâ€™s notes on a mobile device or computer. Remember to bookmark this page! International commentaries in PDF format, view with free Adobe© Reader©; audio in MP3 format; videos on YouTube and Vimeo. Please report any problems with this site to: webmaster@freebiblecommentary.org, or email csquared3@tx.rr.com.